Amazon cover image
Image from Amazon.com

Responsible data science

By: Bruce, Peter C [Author] | Flemin, Grant [Co-Author]Material type: TextTextLanguage: English Publication details: New Jersey: Wiley Data and Cybersecurity, 2021. Description: xxiii, 277pISBN: 9781119741770Subject(s): Data Science and Background Knowledge | The Ways AI Goes Wrong, and the Legal Implications | Responsible Data Science FrameworkDDC classification: 003.54 Online resources: Click here to access online
Tags from this library: No tags from this library for this title. Log in to add tags.
Star ratings
    Average rating: 0.0 (0 votes)
Holdings
Item type Current library Call number Status Date due Barcode
e-Books Dr. S. R. Ranganathan Library
Ebook (Online Access)
003.54 (Browse shelf(Opens below)) Available EB0212

Explore the most serious prevalent ethical issues in data science with this insightful new resource

The increasing popularity of data science has resulted in numerous well-publicized cases of bias, injustice, and discrimination. The widespread deployment of “Black box” algorithms that are difficult or impossible to understand and explain, even for their developers, is a primary source of these unanticipated harms, making modern techniques and methods for manipulating large data sets seem sinister, even dangerous. When put in the hands of authoritarian governments, these algorithms have enabled suppression of political dissent and persecution of minorities. To prevent these harms, data scientists everywhere must come to understand how the algorithms that they build and deploy may harm certain groups or be unfair.

Responsible Data Science delivers a comprehensive, practical treatment of how to implement data science solutions in an even-handed and ethical manner that minimizes the risk of undue harm to vulnerable members of society. Both data science practitioners and managers of analytics teams will learn how to:

Improve model transparency, even for black box models
Diagnose bias and unfairness within models using multiple metrics
Audit projects to ensure fairness and minimize the possibility of unintended harm
Perfect for data science practitioners, Responsible Data Science will also earn a spot on the bookshelves of technically inclined managers, software developers, and statisticians.


Implemented and Maintained by Dr. S.R. Ranganathan Library.
For any Suggestions/Query Contact to library or Email: library@iipe.ac.in
Website/OPAC best viewed in Mozilla Browser in 1366X768 Resolution.

Powered by Koha