Process dynamics and control (Record no. 859)

MARC details
000 -LEADER
fixed length control field 11381 a2200253 4500
005 - DATE AND TIME OF LATEST TRANSACTION
control field 20250409112433.0
008 - FIXED-LENGTH DATA ELEMENTS--GENERAL INFORMATION
fixed length control field 230613b2021|||||||| |||| 00| 0 eng d
020 ## - INTERNATIONAL STANDARD BOOK NUMBER
ISBN 9789354248429
041 ## - LANGUAGE CODE
Language code of text/sound track or separate title English
082 ## - DEWEY DECIMAL CLASSIFICATION NUMBER
Classification number 660.2815 S43, 4
100 ## - MAIN ENTRY--AUTHOR NAME
Personal name Seborg, Dale E.
Relator term Author
100 ## - MAIN ENTRY--AUTHOR NAME
Personal name Edgar, Thomas F.
Relator term Co-Author
100 ## - MAIN ENTRY--AUTHOR NAME
Personal name Mellichamp, Duncan A.
Relator term Co-Author
100 ## - MAIN ENTRY--AUTHOR NAME
Personal name Doyle III, Francis J.
Relator term Co-Author
245 ## - TITLE STATEMENT
Title Process dynamics and control
250 ## - EDITION STATEMENT
Edition statement 4th ed.
260 ## - PUBLICATION, DISTRIBUTION, ETC. (IMPRINT)
Name of publisher Wiley India Pvt. Ltd,
Year of publication 2021.
Place of publication New Delhi:
300 ## - PHYSICAL DESCRIPTION
Number of Pages xxi, 593p, Appendix I1-19, J1-20, K1-6, L1-19, M1-3, N1-3, Index 1-8; 23cms.
500 ## - GENERAL NOTE
General note This Indian adaptation of the fourth edition of the book, builds on the conceptual strength of the previous editions, with the focus on addition and reorganization of topics to make it a better-fit textbook for Indian Universities. It offers new and updated material on basic and advanced process control, particularly related to MATLAB® applications. Useful new key features are presentation of the entire text including solved examples and exercise problems in SI units and extensive use of MATLAB®/Simulink® to supplement standard hand-solved examples.<br/><br/>Preface to the Adapted Edition<br/><br/>Preface<br/><br/>Part One: Introduction to Process Control<br/><br/>Chapter 1 Introduction to Process Control<br/><br/>1.1 Need for Control Systems<br/><br/>1.2 Characteristics of Process Control Problems<br/><br/>1.3 Designing Control Systems for a Process<br/><br/>1.4 Classification of Process Control Strategies<br/><br/>1.5 Multiloop Versus Multivariable Control<br/><br/>1.6 Design Aspects of Control Systems<br/><br/>Chapter 2 Theoretical Models of Chemical Processes<br/><br/>2.1 Dynamic Process Models – Their Strengths and Limitations<br/><br/>2.2 General Modeling Principles<br/><br/>2.3 Degrees of Freedom Analysis<br/><br/>2.4 Degrees of Freedom Analysis for Process Control<br/><br/>2.5 Dynamic Models of Representative Processes<br/><br/>2.6 Solving Differential Equations using MATLAB<br/><br/>Part Two: Dynamic Behavior of Processes<br/><br/>Chapter 3 Laplace Transforms<br/><br/>3.1 Laplace Transforms of Representative Functions<br/><br/>3.2 Solution of Differential Equations by Laplace Transform Techniques<br/><br/>3.3 Partial Fraction Expansion (PFE)<br/><br/>3.4 Other Laplace Transform Properties<br/><br/>3.5 A Transient Response Example<br/><br/>3.6 Solving Laplace Transform Problems using MATLAB<br/><br/>Chapter 4 Transfer Function and State-Space Models<br/><br/>4.1 Introduction to Transfer Function Models<br/><br/>4.2 Properties of Transfer Functions<br/><br/>4.3 Linearization of Nonlinear Models<br/><br/>4.4 State-Space and Transfer Function Matrix Models<br/><br/>4.5 Poles and Zeros and Their Effect on Process Response<br/><br/>4.6 Converting One Form of Model to Another using MATLAB<br/><br/>Chapter 5 Dynamic Behavior of First-Order and Second-Order Processes<br/><br/>5.1 Standard Process Inputs<br/><br/>5.2 Zero-Order Systems (Instantaneous Processes)<br/><br/>5.3 First-Order Processes and Their Characteristics<br/><br/>5.4 Response of First-Order Processes<br/><br/>5.5 Response of First-Order Integrating Processes<br/><br/>5.6 First-Order Processes with Variable Time Constant and Gain<br/><br/>5.7 First-Order Processes with Numerator Dynamics<br/><br/>5.8 Second-Order Processes and Their Types<br/><br/>5.9 Response of Second-Order Processes<br/><br/>5.10 Second-Order Processes with Numerator Dynamics<br/><br/>5.11 Determining Step Response Characteristics using MATLAB<br/><br/>Chapter 6 Dynamic Behavior of Higher-Order Processes<br/><br/>6.1 Processes with Time Delays<br/><br/>6.2 Approximation of Higher-Order Transfer Functions<br/><br/>6.3 Interacting and Noninteracting Processes<br/><br/>6.4 Multiple-Input, Multiple-Output (MIMO) Processes<br/><br/>6.5 Fitting First- and Second-Order Models Using Step Tests<br/><br/>Part Three: Classical Feedback Control<br/><br/>Chapter 7 Feedback Controllers<br/><br/>7.1 Introduction<br/><br/>7.2 Basic Control Modes<br/><br/>7.3 Features of PID Controllers<br/><br/>7.4 Digital Versions of PID Controllers<br/><br/>7.5 Typical Responses of Feedback Control Systems<br/><br/>7.6 On-Off Controllers<br/><br/>7.7 SIMULINK Model for a Feedback Control System<br/><br/>Chapter 8 Control System Instrumentation<br/><br/>8.1 Sensors, Transmitters, and Transducers<br/><br/>8.2 Final Control Elements<br/><br/>8.3 Accuracy in Instrumentation<br/><br/>8.4 Piping and Instrumentation Diagrams (P&ID)<br/><br/>Chapter 9 Dynamic Behavior and Stability of Closed-Loop Control Systems<br/><br/>9.1 Block Diagram Representation<br/><br/>9.2 Closed-Loop Transfer Functions<br/><br/>9.3 Closed-Loop Responses of Simple Control Systems<br/><br/>9.4 Stability of Closed-Loop Control Systems<br/><br/>9.5 Root Locus Diagrams<br/><br/>9.6 Rules for Drawing Root Locus Diagram<br/><br/>9.7 Generating Root Locus Diagram using MATLAB<br/><br/>Chapter 10 Frequency Response Analysis and Control System Design<br/><br/>10.1 Sinusoidal Forcing of A First-order Process<br/><br/>10.2 Sinusoidal Forcing of an nth-Order Process<br/><br/>10.3 Bode Diagrams<br/><br/>10.4 Frequency Response Characteristics of Feedback Controllers<br/><br/>10.5 Nyquist Diagrams<br/><br/>10.6 Bode Stability Criterion<br/><br/>10.7 Controller Design Based on Bode Stability Criterion<br/><br/>10.8 Gain and Phase Margins<br/><br/>Chapter 11 PID Controller Design, Tuning, and Troubleshooting<br/><br/>11.1 Performance Criteria For Closed-Loop Systems<br/><br/>11.2 Model-Based Design Methods<br/><br/>11.3 Controller Tuning Relations<br/><br/>11.4 Controllers With Two Degrees of Freedom<br/><br/>11.5 Controller Tuning Based On Simple Performance Criterion (One-Quarter Decay Ratio)<br/><br/>11.6 On-Line Controller Tuning<br/><br/>11.7 Guidelines For Common Control Loops<br/><br/>11.8 Troubleshooting Control Loops<br/><br/>Part Four: Advanced Process Control<br/><br/>Chapter 12 Enhanced Single-Loop Control Strategies<br/><br/>12.1 Feedforward Control<br/><br/>12.2 Ratio Control<br/><br/>12.3 Cascade Control<br/><br/>12.4 Time-Delay Compensation<br/><br/>12.5 Inferential Control<br/><br/>12.6 Selective Control Systems<br/><br/>12.7 Nonlinear Control Systems<br/><br/>12.8 Adaptive Control Systems<br/><br/>Chapter 13 Digital Sampling, Filtering, and Control<br/><br/>13.1 Components of Digital Computer Control Loop<br/><br/>13.2 Continuous To Discrete Transformation<br/><br/>13.3 Signal Processing and Data Filtering<br/><br/>13.4 Discrete to Continuous Transformation<br/><br/>13.5 z-Transform Analysis For Digital Control<br/><br/>13.6 Tuning of Digital PID Controllers<br/><br/>13.7 Direct Synthesis for Design of Digital Controllers<br/><br/>13.8 Minimum Variance Control<br/><br/>Chapter 14 Multiloop and Multivariable Control<br/><br/>14.1 Process Interactions and Control Loop Interactions<br/><br/>14.2 Pairing of Controlled and Manipulated Variables<br/><br/>14.3 Singular Value Analysis<br/><br/>14.4 Tuning of Multiloop PID Control Systems<br/><br/>14.5 Decoupling and Multivariable Control Strategies<br/><br/>14.6 Strategies for Reducing Control Loop Interactions<br/><br/>Chapter 15 Model Predictive Control<br/><br/>15.1 Overview of Model Predictive Control<br/><br/>15.2 Predictions for SISO Models<br/><br/>15.3 Predictions for MIMO Models<br/><br/>15.4 Model Predictive Control Calculations<br/><br/>15.5 Set-Point Calculations<br/><br/>15.6 Selection of Design and Tuning Parameters<br/><br/>15.7 Implementation of MPC<br/><br/>Chapter 16 Development of Empirical Models from Process Data<br/><br/>16.1 Model Development Using Linear or Nonlinear Regression<br/><br/>16.2 Neural Network Models<br/><br/>16.3 Development of Discrete-Time Dynamic Models<br/><br/>16.4 Identifying Discrete-Time Models from Experimental Data<br/><br/>Chapter 17 Process Monitoring<br/><br/>17.1 Traditional Monitoring Techniques<br/><br/>17.2 Quality Control Charts<br/><br/>17.3 Extensions of Statistical Process Control<br/><br/>17.4 Multivariate Statistical Techniques<br/><br/>17.5 Control Performance Monitoring<br/><br/>Chapter 18 Batch Process Control<br/><br/>18.1 Batch Control Systems<br/><br/>18.2 Sequential and Logic Control<br/><br/>18.3 Control During the Batch<br/><br/>18.4 Run-to-Run Control<br/><br/>18.5 Batch Production Management<br/><br/>Chapter 19 Digital Process Control Systems: Hardware and Software<br/><br/>19.1 Distributed Digital Control Systems<br/><br/>19.2 Analog and Digital Signals and Data Transfer<br/><br/>19.3 Microprocessors and Digital Hardware in Process Control<br/><br/>19.4 Software Organization<br/><br/>Summary<br/><br/>References<br/><br/>Exercises<br/><br/>Multiple Choice Questions<br/><br/>Answer Key<br/><br/>Appendix A: Review of Thermodynamic Concepts for Conservation Equations<br/><br/>A.1 Single-Component Systems<br/><br/>A.2 Multicomponent Systems<br/><br/>Appendix B: Control Simulation Software<br/><br/>B.1 MATLAB Operations and Equation Solving<br/><br/>B.1.1 Matrix Operations<br/><br/>B.1.2 Solution of Algebraic Linear or Nonlinear Equations<br/><br/>B.1.3 m-files<br/><br/>B.1.4 Functions and Scripts<br/><br/>B.1.5 Solving a System of Differential Equations<br/><br/>B.1.6 Plots<br/><br/>B.1.7 MATLAB Toolboxes<br/><br/>B.2 Computer Simulation with Simulink<br/><br/>B.3 Computer Simulation with LabVIEW<br/><br/>Appendix C: Process Control Modules<br/><br/>C.1 Introduction<br/><br/>C.2 Module Organization<br/><br/>C.3 Hardware and Software Requirements<br/><br/>C.4 Installation<br/><br/>C.5 Running the Software<br/><br/>Appendix D: Review of Basic Concepts From Probability and Statistics<br/><br/>D.1 Probability Concepts<br/><br/>D.2 Means and Variances<br/><br/>D.2.1 Means and Variances for Probability Distributions<br/><br/>D.2.2 Means and Variances for Experimental Data<br/><br/>D.3 Standard Normal Distribution<br/><br/>D.4 Error Analysis<br/><br/>Appendix E: Process Safety and Process Control<br/><br/>E.1 Layers of Protection<br/><br/>E.1.1 The Role of the Basic Process Control System<br/><br/>E.1.2 Process Alarms<br/><br/>E.1.3 Safety Instrumented System (SIS)<br/><br/>E.1.4 Interlocks and Emergency Shutdown Systems<br/><br/>E.2 Alarm Management<br/><br/>E.2.1 Alarm Guidelines<br/><br/>E.2.2 Alarm Rationalization<br/><br/>E.3 Abnormal Event Detection<br/><br/>E.3.1 Fault Detection Based on Sensor and Signal Analysis<br/><br/>E.3.2 Model-Based Methods<br/><br/>E.3.3 Knowledge-Based Methods<br/><br/>E.4 Risk Assessment<br/><br/>E.4.1 Reliability Concepts<br/><br/>E.4.2 Overall Failure Rates<br/><br/>E.4.3 Fault and Event Tree Analysis<br/><br/>Appendix F: Real-Time Optimization<br/><br/>F.1 Basic Requirements in Real-Time Optimization<br/><br/>F.1.1 Implementation of RTO in Computer Control<br/><br/>F.1.2 Planning and Scheduling<br/><br/>F.2 The Formulation and Solution of RTO Problems<br/><br/>F.3 Unconstrained and Constrained Optimization<br/><br/>F.3.1 Single-Variable Optimization<br/><br/>F.3.2 Multivariable Optimization<br/><br/>F.4 Linear Programming<br/><br/>F.4.1 Linear Programming Concepts<br/><br/>F.5 Quadratic and Nonlinear Programming<br/><br/>F.5.1 Quadratic Programming<br/><br/>F.5.2 Nonlinear Programming Algorithms and Software<br/><br/>Appendix G: Biosystems Control Design<br/><br/>G.1 Process Modeling and Control in Pharmaceutical Operations<br/><br/>G.1.1 Bioreactors<br/><br/>G.1.2 Crystallizers<br/><br/>G.1.3 Granulation<br/><br/>G.2 Process Modeling and Control for Drug Delivery<br/><br/>G.2.1 Type 1 Diabetes<br/><br/>G.2.2 Blood Pressure Regulation<br/><br/>G.2.3 Cancer Treatment<br/><br/>G.2.4 Controlled Treatment for HIV/AIDS<br/><br/>G.2.5 Cardiac-Assist Devices<br/><br/>G.2.6 Additional Medical Opportunities for Process Control<br/><br/>Appendix H: Dynamics and Control of Biological Systems<br/><br/>H.1 Systems Biology<br/><br/>H.2 Gene Regulatory Control<br/><br/>H.2.1 Circadian Clock Network<br/><br/>H.3 Signal Transduction Networks<br/><br/>H.3.1 Chemotaxis<br/><br/>H.3.2 Insulin-Mediated Glucose Uptake<br/><br/>H.3.3 Simple Phosphorylation Transduction Cascade<br/><br/>Appendix I*: Introduction to Plantwide Control<br/><br/>Appendix J*: Plantwide Control System Design<br/><br/>Appendix K*: Dynamic Models and Parameters Used for Plantwide Control Chapters<br/><br/>Appendix L*: Additional Closed-Loop Frequency Response Material<br/><br/>Appendix M*: Contour Mapping and the Principle of the Argument<br/><br/>Appendix N*: Partial Fraction Expansions for Repeated and Complex Factors<br/><br/>Index
650 ## - SUBJECT ADDED ENTRY--TOPICAL TERM
Topical Term Chemical process control
General subdivision Data processing
650 ## - SUBJECT ADDED ENTRY--TOPICAL TERM
Topical Term Chemical process control
650 ## - SUBJECT ADDED ENTRY--TOPICAL TERM
Topical Term Chemical process control
General subdivision Mathematical models
942 ## - ADDED ENTRY ELEMENTS (KOHA)
Koha item type Books
Holdings
Withdrawn status Lost status Damaged status Not for loan Permanent Location Current Location Shelving location Full call number Accession Number Koha item type
        Dr. S. R. Ranganathan Library Dr. S. R. Ranganathan Library General Stacks 660.2815 S43, 4 2832 Books

Implemented and Maintained by Dr. S.R. Ranganathan Library.
For any Suggestions/Query Contact to library or Email: library@iipe.ac.in
Website/OPAC best viewed in Mozilla Browser in 1366X768 Resolution.

Powered by Koha